GENERAL INFORMATION				
Course teacher	Asst Prof Vatroslav Šerić MMedBiochem			
	PhD			
Associates	Asst. Prof. Sania Mandić. MMedBiochem.			
	PhD			
	Marija Milić, MmedBiochem, PhD			
	Tihana Pavošević. MMedBiochem			
	Maia Lukić. MMedBiochem			
	Tara Rolić. MMedBiochem			
Study programme	University Graduate Study of Medical			
	Laboratory Diagnostics			
Course status	Elective			
Year of study, semester	1 st year, 2 nd semester			
ECTS credits	5			
Form of teaching (number of classes L+S+P+e-	Lectures: 35: seminars: 20: practicums: 15			
learning)				
Expected number of students attending the	20			
course				
COURSE DESCRIPTION				
Course objectives				
Introduce students to general principles of laborat	ory technologies used in diagnostics. Introduce			
students to application of such technologies in det	ermination of individual analytes. Present to			
the students. To show students the most importan	t procedures for the implementation of			
analyzes and the shortcomings of individual measu	irement procedures.			
Course entry requirements and competencies nee	eded for the course			
Completed courses at the Undergraduate Study Pr	ogramme of Medical Laboratory Diagnostics			
or equivalent bachelor's degree (baccalaureate)				
Learning outcomes at study programme level				
1.1, 1.2, 2.1, 2.2, 2.3, 2.6, 3.1, 3.2				
Expected learning outcomes at course level				
After attending all lectures and completing all sem	inars and practical work, studying			
independently and passing the exam, the students	will be able to:			
1. apply clinical knowledge in laboratory diagnostics and the implementation of new				
laboratory procedures for the detection and monitoring of diseases and the effect of				
Unerapy.				
2. Children evaluate measurement technologies for testing samples in unreferit conditions.				
analysis				
anarysis. A use complex automatic analyzers in medical-biochemical laboratories				
5. valorize the results of immunogenetic testing				
Course content				
Lectures: Presentation of the development of measuring technologies in diagnostics. Principles of				
certain measurement technologies: UV VIS, FTIR spectroscopy; osmometry; nephelometry and				

certain measurement technologies: UV VIS, FTIR spectroscopy; osmometry; nephelometry and turbidimetry; flame photometry; atomic absorption spectroscopy; electrochemical methods, ion-selective electrodes (ISE); thin-layer, gas, high-pressure and liquid chromatography; capillary and gel electrophoresis; Immunochemical methods. Application in laboratory diagnostics.

Seminars: Laboratory methods in diagnostics: UV VIS, FTIR spectroscopy; osmometry; nephelometry and turbidimetry; flame photometry; atomic absorption spectroscopy; electrochemical methods, ion-selective electrodes; thin-layer, gas, high-pressure and liquid chromatography; capillary and gel electrophoresis; Immunochemical methods.

Exercises: Independent work on laboratory devices and on the application of laboratory methods on biological samples.Utilization of LCMS.

Forms of teaching

Lectures; seminars; practicums.

Students' responsibilities

Attendance is obligatory throughout all course forms and the student has to attend all the exams. Student absence of up to 30% is considered acceptable in each teaching form. Practical work and seminars that were not completed have to be taken in the form of colloquiums. The student has to attend all forms of exams required.

Grading and evaluating of students' work during classes and in the final exam

Teaching activity	ECTS	Learning	Student activity	Evaluation	Grade	points
		outcome		methods	Min.	Max.
Attending classes Lectures	0.25	1-5	Attendance	Attendance records	1	5
Seminars	0.5		Preparation of seminar work	Seminar paper	5	15
Practicums	0.75		Practical work	Submitted report	4	10
Final exam	3.5	1-5	Studying for	Written exam	20	35
			final exam	Oral exam	20	35
Total	5				50	100

Evaluation of written part of final exam

Percentage of correct answers (%)	Grade points
60.00-64.99	20
65.00-69.99	23
70.00-74.99	25
75.00-79.99	27
80.00-84.99	29
85.00-89.99	31
90.00-94.99	33
95.00-100	35

Formulating the final grade:

Grade points achieved in classes are combined with points achieved in the final exam. Grading in the ECTS system is absolute grading and represents one's final achievement. Grades are

numerically expressed as follows: A – excellent (5): 80-100 grade points; B – very good (4): 70-79.99 grade points; C – good (3): 60-69.99 grade points; D – sufficient (2): 50-59.99 grade points.

Assigned reading (available in the library and in other media)					
Title	Number of	Availability in			
	copies in the	other media			
	library				
E. Topić, D. Primorac,. S. Janković, M. Štefanović i sur.	8				
Medicinska biokemija i laboratorijska medicina u kliničkoj					
praksi. Medicinska naklada, Zagreb, 2018.					
Selected scientific and professional papers and web sites for e-		On line			
learning					
Further reading					
Čepelak I, Štraus B, Dodig S, Labar B. Medicinsko biokemijske smjernice, Medicinska naklada,					
Zagreb, 2004, selected chapters					
Quality assurance methods that ensure the acquisition of exit competencies					

Anonymous, quantitative, standardised students' opinion survey on the course and teacher's work, carried out by the Quality Assurance Office of the Faculty of Medicine in Osijek.