MOLECULAR GENETICS AND MOLECULAR MECHANISMS				
GENERAL INFORMATION				
Course teacher	Prof. Dragan Primorac, PhD			
Associates	Prof. Ljubica Glavaš-Obrovac, MBiotech, PhD			
	Prof. Marija Heffer, MD, PhD			
	Prof. Martina Smolić, MD, PhD			
	Assoc. Prof. Jasenka Wagner Kostadinović,			
	MMedBiochem, PhD			
	Asst.Prof. Teuta Opačak-Bernardi, MBiolMol,			
	PhD			
	Marta Balog, MBiol, PhD			
	Tea Omanović Kolarić, MD, PhD			
	Hrvoje Roguljić, MD, PhD			
	Ana Petrović, MD			
	Aurora Antolović Amidžić, MPharm			
Study programme	Graduate University Study of Medical			
	Laboratory Diagnostics			
Course status	mandatory			
Year of study, semester	1 st year, 2 nd semester			
ECTS credits	5			
Form of teaching (number of classes)	Lectures: 30; Seminars: 30			
Expected number of students attending the	20			
course				
COURSE DESCRIPTION				
Course objectives				
To bring new knowledge from molecular gene	tics to students, to increase their ability to			
independently read and understand scientific articles, and to teach them the simple way to apply				
standard molecular and laboratory techniques in clinical practice. By attending this course, students				
will come to fully understand genetic and molecula	r basis of diseases, as well as their accompanying			
molecular, cellular, and development processes.				
Course entry requirements and competencies needed for the course				
Completed courses at the Undergraduate Study Programme of Medical Laboratory Diagnostics				
or equivalent bachelor's degree (baccalaureate)				
Learning outcomes at study programme level				
1.1, 2.1, 2.2, 2.4, 2.5, 2.7, 3.1, 3.2				
Expected learning outcomes at course level				
After attending lectures, seminars, independent st	udy , and passing the exam students will be			
able to:	ll de ethe and weather de fan ite an finnestien			
1. explain the mechanisms of programmed cell death and methods for its confirmation.				
2. explain the development and causes of cancer, cancer epigenetics, and molecular				
approaches in cancer treatment .				
3. describe the role of stem cells and their dif	terentiation			
4. valorize the role of pharmacogenetics and pharmacogenomics in treatment of diseases.				
5. integrate basic genetic principles of forensic DNA analysis.				
6. apply statistical, population, and medical studies in forensic genetics; ethical, legal, and				
social aspects of DNA testing and creating a national database .				
7. explain the fundamentals of personalised r				
	nedicine and specify examples of clinical			

Course content

Lectures: Contemporary molecular diagnostics. Glycomics. Animal models for understanding human genetic diseases. Integration of epigenetic and genetic approaches to the pathogenesis of human diseases. Pharmacogenetics - a personalized approach to treatment. Infectious diseases and genetic resistance. Genetics and evolution. Infectious diseases and genetic resistance. Tissue engineering. Cell and gene therapy. Molecular basis of the development of the disease. OMICS approach in understanding the basis of pain. Forensic genetics.

Seminars: Contemporary molecular diagnostics. Glycomics. Animal models for understanding human genetic diseases. Integration of epigenetic and genetic approaches to the pathogenesis of human diseases. Pharmacogenetics - a personalized approach to treatment. Infectious diseases and genetic resistance. Genetics and evolution. Infectious diseases and genetic resistance. Tissue engineering. Cell and gene therapy. Biological variation of biochemical and hematological components of blood/ Influence of various factors on the result of laboratory tests. Molecular autopsy. Obesity and metabolic syndrome. Bone diseases. Genetic causes of infertility. Pediatric medicine. The most common hereditary diseases. Forensic DNA analysis.

Forms of teaching

Lectures; seminars; independent assignments; multimedia and network

Students' responsibilities

Attendance is obligatory throughout all course forms, and the student has to attend all the exams. Student absence of up to 30% (full-time students) or 50% (part-time students) is considered acceptable in each teaching form. Practical work and seminars that were not completed have to be taken in the form of colloquiums.

Monitoring students' work (Connecting learning outcomes, teaching methods and evaluation)

Teaching activity	ECTS	Learning	Student activity	Evaluation	Grade	points
		outcome		methods	Min.	Max.
Attending classes	1.5	1-7	Attendance,	Attendance	1	5
(lectures,			Seminar paper	records		
seminars)						
				Writing and	15	35
				presenting		
				seminar paper		
Final exam	3.5	1-7	Studying for final	Written exam	24	40
			exam	Oral exam	10	20
Total	5				50	100

Evaluation of written part of final exam

Percentage of correct answers	
(%)	Grade points
60.00-64.99	24
65.00-69.99	26
70.00-74.99	28
75.00-79.99	30
80.00-84.99	32
85.00-89.99	34
90.00-94.99	36
95.00-100	40

Evaluation of oral part of final exam:

Answear	Grade points	
average answer with clearly identifiable errors	10-13	
very good answer with minor errors	14-16	
excellent answer	17-20	

*Formulating the final grade:*_Grade points achieved in classes are combined with points achieved in the final exam. Grading system involves absolute grading and represents one's final achievement. Grades are numerically expressed as follows:

A – excellent (5): 80-100 grade points; B – very good (4): 70-79.99 grade points; C – good (3): 60-69.99 grade points; D – sufficient (2): 50-59.99 grade points

Assigned reading (available in the library and in other media)					
Title	Number of	Availability in			
	copies in the	other media			
	library				
Stanica, molekularni pristup, 5 th edition (Cooper: The Cell: A	11				
Molecular Approach, 5 th Edition)					
Primorac D, et. al. Analiza DNA u sudskoj medicini i pravosuđu,	12				
Medicinska naklada, Zagreb, 2008					
Scientific and professional papers for seminars selected by		On line			
teacher					
Further reading					

1. *1. Forensic DNA Applications: An Interdisciplinary Perspective.* Editors: Dragan Primorac and Moses Schanfield. Boca Raton (USA): CRC Press Taylor and Francis Group 2014 Croat Med J. 2011; 52: 225.-34.

2. 2. Coleman WB, Tsongalis GJ. Molecular Pathology: The Molecular Basis of Human Disease. 2009, Academic Press.

Quality assurance methods that ensure the acquisition of exit competencies

Anonymous, quantitative, standardised students' opinion survey on the course and teacher's work, carried out by the Quality Assurance Office of the Faculty of Medicine in Osijek.