GENERAL INFORMATION				
Course name	Omics – medicine			
Course director	Prof. Marija Heffer, MD, PhD			
Assistants	Asst. Prof. Goran Ćurić, MD, PhD			
Study program	Integrated undergraduate and graduate university study program Medical Studies in German			
Course status	Elective			
Year of study, semester	1 st year, 2 nd semester			
Credits allocated	ECTS student workload	1		
and form of instruction	Number of teaching hours (L+S+E)	(5+8+2) 15		

COURSE DESCRIPTION

Course objectives

Familiarization with diagnostic tools of the 'omics' type, from the principle of taking and storing to the analysis of biological samples and the construction and use of large databases generated in this way.

Familiarization with the potential of genomic analysis in the identification of inherited diseases, multiple molecular diagnoses, in the non-invasive diagnosis of chromosomal aneuploidies, targeted tumor therapy, pharmacogenomics and clinical microbiology. A critical review of gene therapy and genome editing and the potential of application of functional nutrition and probiotics in the treatment and prevention of chronic diseases by affecting the microbiome composition.

Course requirements

Attended Medical biology course.

Learning outcomes relevant to the study program

1.1., 2.1., 3.4., 3.5.

Expected learning outcomes (5-10 learning outcomes)

Upon successful completion of the course Omics medicine, the student will be able to:

- 1. Explain the advantages and disadvantages of certain biological samples for genomic analysis
- 2. List the ethical and methodological principles of taking and storing samples and forming a biobank
- 3. Explain the key principle of operation of sequencing platforms (NGS and Nanopor)
- 4. Identify potential candidates for genomic analysis
- 5. List examples of clinical application of genomic analysis in diagnostics and personalized therapy.

Course content

Samples for genomic analysis. Taking blood and buccal mucosa samples, labeling and storage. Genomic analysis databases and bioinformatics search tools. Platforms for genomic analysis (NG and Nanopor). Diagnostics of inherited diseases and multiple molecular diagnoses using clinical examples. Non-invasive diagnostics of chromosomal aneuploidies and sources of error. Genomic analysis of tumors as a tool for personalized therapy. Pharmacogenomics using clinical examples. Medicines for which knowledge of the patient's metabolic profile is relevant. Genomic analysis of microorganisms as a tool of clinical microbiology.

The relationship between chronic diseases and microbiome composition. Application of functional nutrition and probiotics. Possibilities of gene therapy with special reference to genome editing using examples from clinical practice.

	⊠lectures	\boxtimes individual assignments
	\boxtimes seminars and workshops	multimedia and Internet
Form of instruction	⊠exercises	laboratory
	distance learning	mentoring activities
	field course	other

Student obligations

Attending all forms of instruction is mandatory, and students must take all exams. A student can be excused from 30% of every form of instruction. Missed exercises and seminars must be compensated by sitting for an exam.

Monitoring student learning

Attendan ce	х	Active participatio n	х	Seminar paper	х	Experimental work	
Written exam	x	Oral exam		Essay		Research	
Project		Continuou s assessme nt		Paper		Practical work	
Portfolio							

Assessment and evaluation of students during class and on the final exam

Curricular	ECTS	Learning	Student	Assessment	Poi	ints
activities		outcome	participation	methods	Min.	M
Attendance	-	1-5	Class attendance,	Records		
Seminar	0.2	1-5	Seminar paper	Presentation	10	
Exercises	0.2	1-5	Entry exam, preparing exercises, keeping an exercise log	Log, entry exam	20	,
Exam (partial exams)	0.2	1-5	Studying for partial exams	2 partial exams	10	
Final exam	0.4	1-5	Studying for the final exam	Written exam	10	
Total	1				50	1

Formulation of the final grade

Points achieved in class are combined with points achieved on the final exam. The

grading in the ECTS system shall be carried out by using absolute distribution, i.e. shall be based on the final achievement and compared to the numerical system as follows: A – excellent (5): 90-100 points; B – very good (4): 80-89.99 points; C – good (3): 65-79.99 points; D – sufficient (2): 50-64.99 points.

Mandatory reading

1. Buselmaier und Haussig: Biologie für Mediziner (Springer-Lehrbuch), 2018

Additional reading

 Stanica: molekularni pristup. Translation of the textbook G.M. Cooper & R.E. Hausman, The Cell – A Molecular Approach, Medicinska Naklada, Zagreb, 2010.
Selected scientific papers

The number of copies of mandatory reading in proportion to the number of students currently taking this course

Title	Number of copies	Number of students		
	A purchased license for online textbooks			
	shall be used https://bfdproxy48.bfd-			
Russimaior und Houssig: Piologia für	online.de/login.htm?back=http%3a%2f%2fp			
Mediziner (Springer Lehrbuch) 2019	artner.bfd-online.info.bfdproxy48.bfd-			
Mediziner (Springer-Leribuch), 2018	online.de%2fameos%2fbfdAboGateway%3f			
	abold%3d264117. Access will be granted to			
	all students enrolled in the study program			
Quality monitoring methods ensuring the acquisition of knowledge upon completion, skills and competences				
An anonymous, quantitative, standardized s	student survey o	n the course and the work of		
professors conducted by the Quality Assurance Office of the Faculty of Medicine in Osijek				
and a unified university student survey conducted by the Quality Assurance Center of the				
Josip Juraj Strossmayer University of Osijek.				