GENERAL INFORMATION								
Course name	Molecular Biology							
Course director	Assoc. Prof. Stana Tokić, PhD							
Assistants	Asst. Prof. Teuta Opačak-Bernardi, PhD Asst. Prof. Marijana Jukić, PhD							
Study program	Integrated undergraduate and graduate university study program Medical Studies in German							
Course status	Elective							
Year	2nd year, 3rd semester							
Credits allocated and form	ECTS student workload	1						
of instruction	Number of teaching hours (L+S+E)	15 (10+0+5)						

COURSE DESCRIPTION

Course objectives

Acquire knowledge about the molecular mechanisms that manage the organization and maintenance of the genome, gene transcription, protein synthesis and genetic variability. Explain the function of genes and the relationship between genetic variants and inherited diseases. Familiarize students with the basic methods of molecular biology and the principles of genetic engineering through practical laboratory exercises.

Course requirements

Completed courses: Medical biology and Medical chemistry.

Learning outcomes relevant to the study program

1.1., 2.1., 3.5.

Expected learning outcomes

Upon successful completion of the course the students will be able to:

Knowledge

- 1. describe the organization and variability of the human genome
- 2. describe the method of reproduction, maintenance and transformation of genome
- 3. explain the relationship between DNA damage and repair mechanisms and cell death and survival
- 4. describe different levels of gene expression regulation and list the purpose and example of molecular analysis of gene expression
- 5. describe classic methods of cloning, preparation of genomic libraries, plasmid vectors and gene transfer into eukaryotic cells

Skills

- 1. Isolate and quantify nucleic acids, DNA and RNA
- 2. Amplify specific RNA and DNA fragments using RT-PCR and qPCR
- 3. Analyze DNA fragments using agarose gel and capillary electrophoresis
- 4. Statistically process the results of RT-qPCR analysis

Course content

DNA and chromosomes. Organization and variability of the human genome. DNA replication and repair mechanisms. Expression of genetic material: from transcription to translation. Nuclear and mitochondrial DNA. Coding and non-coding sequences. Repetitive

sequences – DNA and RNA transposons, satellite DNA, RNA genes. Single nucleotide polymorphisms, SNPs. The role of variable genome sequences and SNPs in the development of disease. Basics of genetic engineering. Recombinant DNA production, DNA cloning and genomic library production, gene transfer into eukaryotic cells and mammalian embryos, DNA amplification using PCR, DNA sequencing. Application of molecular biology methods in genetic research of an individual. Isolation of DNA and RNA molecules from peripheral blood samples. Measurement of DNA and RNA concentration using fluorometric and spectrophotometric methods. Synthesis of cDNA and analysis of gene expression with RT-qPCR method using TaqMan probe.

∣ ⊠lectures
seminars and
workshops
⊠exercises
distance learning
field course

➢ individual assignments
☐ multimedia and Internet
➢ laboratory
☐ mentoring activities
☐ other

Student obligations

Form of instruction

Attending all forms of instruction is mandatory, and students must take all exams. A student can be excused from 30% of every form of instruction. Missed exercises must be compensated by sitting for an exam.

Monitoring student learning

_		-				
Attendanc e	x	Active participation	х	Seminar paper	Experimental work	х
Written exam	x	Oral exam		Essay	Research	
Project		Continuous assessment		Paper	Practical work	х
Portfolio						

Assessment and evaluation of students during class and on the final exam

Activity and participation of students will be assessed. Students are required to pass written and oral exam, and the final assessment includes all components of student academic performance monitoring. From all elements of monitoring and assessment, a student can earn a maximum of 100 points, which makes 100% of the grade. For a passing grade, a student must earn at least 60 points or 60% of the grade.

Mandatory reading

1.Rolf Knippers. Molekulare Genetik. Georg Thieme Verlag KG; 2015 ISBN 9783134770100

Additional reading

1. Strachnan T.& Read A. Human molecular genetics 4th edition, 2011, Garland Science 2. Reinard T. Molekularbiologische Methoden. Uni Tb Utb.; 2010. ISBN: 978-3-8252-8449-7

3. Karp Gerald. Molekulare Zellbiologie, 2005, Springer-Verlag Berlin Heidelberg. ISBN: 3-540-23857-3

The number of copies of mandatory reading in proportion to the number of students currently taking this course

Title	Number of copies	Number of students		
Rolf Knippers. Molekulare Genetik. Georg	A purchased license for online			
Thieme Verlag KG; 2015 ISBN 9783134770100	textbooks shall be used. Access will be			

						grant	ed to	all stu	udents enrolled in	the
								stuay	/ program	
-	 	-	 -	-				_	-	

Quality monitoring methods ensuring the acquisition of knowledge upon completion, skills and competences

The quality of classes is monitored on the basis of anonymous, quantitative and standardized student surveys on the quality of organization and classes, course content and the work of professors. Everything is checked by the Quality Assurance Office of the Faculty of Medicine in Osijek and the unified university student survey conducted by the Quality Assurance Center of the Josip Juraj Strossmayer University of Osijek.