| PHYSICS AND BIOPHYSICS |  |
| :--- | :--- |
| GENERAL INFORMATIONS | Asst. Prof. Hrvoje Brkić, MPhys, PhD |
| Course coordinator | Prof. Dario Faj, MPhys, PhD <br> Asst. Prof. Mladen Kasabašic, MPhys, PhD <br> Ana Ivković, , MPhys, PhD <br> Ivana Krpan, MPhys |
| Assistant/Associate | Undergraduate University Study of Medical Laboratory <br> Diagnostics |
| Study Programme | mandatory |
| Status of the course | $1^{\text {st }}$ year, 2 |

## Physical optics

Notion of force and energy: The motion of solid bodies. The energy of the body. Newton's laws. Motion and deformation of solid bodies under the action of force. Centripetal and centrifugal force, use in medicine, experiment. Lever; translational and rotational balance. Types of levers in the human body.
Hydrostatics and hydrodynamics: Gas physics and an example of application in medicine. Pressure. Pascal's Law, hydrostatic pressure, buoyancy, Bernoulli's Law, Poissel Law. Rheological properties of the blood. Simpler examples of the application of basic laws of hydrostatics and hydrodynamics to the human body.
Introduction to electricity and magnetism: Electric and magnetic field. Polarization. Induction. Action potential. Physical basics ECG, EEG and EEG. Tissues in the electric and magnetic fields. Tissue in a permanent and variable electric field; mechanisms of tissue polarization. Tissue in a constant and variable magnetic field; magnetic properties of the substance. T
Thermodynamics: Basic laws of thermodynamics. Thermodynamics of biological systems. Energy transport. A practical example of energy transfer due to different temperatures and numerical problem solving. Mass transfer. Diffusion. Osmosis. Nernst equation in biology, chemistry, physics, physiology
Source of the wave: Sound wave. Spreading a sound wave through space. Audiometry; isophone curves. Intensity level. dB. Volume level. Relationship between physical and physiological parameters

Seminars: Structure of atoms and molecules: The law of absorption. lonizing radiation. Solving the numerical problems Introduction to spectroscopy. Types of spectroscopy. The use of radioactivity and EM waves in medical laboratory diagnostics. Emission spectroscopy, spectroscopy devices
Mechanics. Centrifuge, Lever, Incline, Crane, Archimedus law, law of communicating vessels Introduction to electricity and magnetism: Tissue heating mechanisms in a variable electrical, variable magnetic and electromagnetic field. Practical examples and experiments.
Optics: Microscope. Types of microscope, resolution, optical bench, optical prism and grid Introduction to molecular modeling. Basic principles of molecular modeling, PDB database Thermodynamics: Mass transfer. Diffusion. Osmosis. Nernst equation in biology, chemistry, physics, physiology

Exercises: Practical laboratory exercises: Statistical and computer data processing and the way of writing reports. Electrical cirrcuts, centrifuge, optical grid, optical bench, periodic voltage analyses, microscope, viscosity of the fluids, surface tension, air humidity, ultrasound, flow velocity calorimeter.

Mode of teaching
Lectures, Problem solving seminars, Laboratory exercises, individual tasks, multimedia and network, laboratory

## Student obligations

Attendance of all forms of classes is mandatory, and the student must access all knowledge checks. The student can justifiably miss out on $30 \%$ of each of the forms of teaching. Undone exercise must be done subsequently.
Monitoring student work (Connectivity of learning outcomes, teaching methods and grading)

| Teaching activity | ECTS | Learning outcome | Student activity | Assessment methods | Grade points |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min. | Max. |
| Attendance | 0.5 | 1-4,6 | Attendance | Evidence | 0 | 0 |
| Pracitical | 1.0 | 5 | Presence and active participation in exercises | Exercise log, knowledge check | 0 | 10 |
| Seminars | 0.5 | 1-4,6 | Solving default problems on your own, solving default tasks, short written checks | Essay, records of resolved tasks, short written checks | 0 | 10 |
| Written exam | 2.0 | 1-6 | Study | Written exam | 0 | 40 |
| Total | 5 |  |  |  | 0 | 60 |

## Calculation of final grade:

(1) practical exam - Students will do 6 practical exercises during class before each practical exercise, students take an entrance colloquium consisting of three questions (multiple choice, essay and computational task). Based on points from colloquium students:

- receive 1 point (all three correct answers),
- have the right to do the exercise ( $2 / 3$ of the correct)
- must reimburse the training ( 0 or 1 correct)
(2) written exam-40 multiple-answer questions
(3) seminar
a) Problem - creating a seminar on a given task - maximum 3 points. The seminar is presented, in the term provided for, seminars can be theoretical or practical
b) Participation in classes during lectures - maximum 1 point
c) Written checks on knowledge during class - maximum 6 points

Criteria: 36-41 (2); 42-47 good (3); 48-53 very good (4); 54-60 excellent (5)
(4) an oral exam (if the student wishes he/she can register an oral exam instead of a written exam)

## Required reading (available in the library and through other media)

| Title | Number of <br> copies in the <br> library | Availability <br> through other <br> media |
| :--- | :---: | :---: |
| Jasminka Brnjas - Kraljević: Fizika za studente medicine, <br> Medicinska naklada, Zagreb, 2001. ISBN: 9531761566. | 30 |  |
| Brnjas-Kraljević: Fizika 1, Struktura tvari i dijagnostičke metode, <br> Medicinska naklada, Zagreb, 2001. | 10 |  |
| Priprema za praktične vježbe iz Medicinske fizike i biofizike |  |  |
| Additional reading |  |  |
| Franjo Šolić, Gordana Žauhar: FIZIKA ZA MEDICINARE, Sveučilište u Rijeci, Medicinski fakultet, Rijeka <br> 2013. |  |  |
| Course evaluation procedures |  |  |
| Anonymous, quantitative, standardised student survey on the course and the teacher's work <br> implemented by the Quality improvement office of the Faculty of Medicine Osijek. |  |  |

