IMMUNOLOGY WITH LABORATORY TECHNOLOGIES			
GENERAL INFORMATIONS			
Course coordinator	Prof. Ines Drenjančević , MD, PhD		
Assistant/Associate	Assoc. Prof. Ana Stupin, MD, PhD		
	Asst. Prof. Ivana Jukić, MD, PhD		
	Asst. Prof. Zrinka Mihaljević, Med Biol et Chem, PhD		
	Nataša Kozina, Med Biol et Chem		
	Petar Sušnjara, MMedLabDiag		
Study Programme	Undergraduate university study of Medical		
Status of the course	mandatory		
Year of study, semester	2.year, 4.semestar		
ECTS	4		
Workload (hours)	Lectures: 30 ; Seminars: 5; Laboratory exercises:15		
Expected number of students	30-35		
Course objectives			
The aim of this course is to acquire basic kn	owledge about the structure and function of the		
immune system and the course of the immu	une response in order to better understand the		
laboratory diagnostic methods used in the o	diagnosis of disorders of the immune system and		
infectious diseases.			
Enrolment requirements and entry compe	tencies		
Acquired conditions for enrollment in the se	econd year of studies.		
Learning outcomes at the Programme leve			
1.1, 1.2, 2.1, 2.2, 2.3, 2.6, 3.1			
Learning outcomes (5-10)			
After completing lectures, seminars and	exercises, independent study and passing the exam,		
1. Present the molecular, cellular and tissue	structure of the immune system		
2 To link biological characteristics and norn	nal development of innate and acquired immunity with		
the outcomes of impaired development and	d/or deficiency of immune components.		
3. compare antigen recognition mecha	nisms, specific and non-specific immune reaction		
mechanisms and immunoregulatory mech	nanisms of stimulating and suppressing the immune		
reaction			
4. Classify and compare humoral and cellula	ar executive mechanisms of the immune reaction		
5. Compare the consequences of an excess	sive or insufficient immune reaction and diseases that		
arise as a result of the immunopathophysio	logical process (autoimmune diseases, hypersensitivity		
reactions, immune deficiencies) and conclu	ide on the principles for therapeutic modulation of the		
6 To connect the mechanisms of basic imm	unity with the principles of transplantation immunology		
6. To connect the mechanisms of basic immunity with the principles of transplantation immunology			
immunosuppression)			
8. Integrate information about the mechanisms by which the immune system participates in the			
prevention/occurrence of neoplasms and critically evaluate and select approaches to the treatment			
of malignant diseases based on the modulation of the immune system.			
9. Describe and compare the mechanisms by which innate and acquired immunity suppress			
bacterial, fungal and viral infections, as well as the consequences of ineffectiveness of individual			
actions.			
course content			

Lectures: Introduction to the immune system. Innate immunity. Antigen collection and presentation antigens to lymphocytes. Recognition of antigens in the acquired immune system. Cell-mediated immunity. Executive mechanisms of Tcell-mediated immunity. Immunological tolerance and autoimmunity. Immune responses to tumors. Humoral immune responses. Executive mechanisms of humoral immunity.

Exercises: Research methods in immunology (Flow cytometry, CD antigens). Methods of proof humoral immunity I (Radioimmunoassay, RIST, RAST, In vitro hypersensitivity tests, electrophoresis and immunoelectrophoresis). Methods for proving humoral immunity II (Complement binding reaction, Agglutination tests). Methods for demonstrating humoral immunity III (Immunofluorescence). Determination of tissue kinship.

Seminars: Hypersensitivity. Congenital and acquired immunodeficiencies

Mode of teaching

Lectures, Problem solving seminars, Laboratory exercises

Student obligations

The student is obliged to regularly attend and actively participate in all forms of classes. The successful performance of seminars and exercises requires prior preparation of the student. To work in the laboratory, the student must have prescribed work clothes (white corner) and literature. Attending all forms of classes is mandatory, and the student must pass all knowledge tests. A student can excuse himself from 30% of each form of teaching. Uncompleted exercises and seminars must be passed.

Monitoring student work (Connectivity of learning outcomes, teaching methods and grading)

Teaching activity	ECTS	Learning	Student	Assessment	Grade	points
		outcome	activity	methods	Min.	Max.
Attending classes	0,5	1-9	Class attendance	Attendance record	2	4
Seminars	0,5	1-9	Preparation of seminar	Seminar presentation	3	6
					5	10
Exercises	0,5	1-9	entrance exams, performing exercises, keeping work diary	work diary, entrance exam	40	80
Final exam	2,5	1-9	Studying for the final exam	Written exam	50	100
Total	4					

Evaluation of the final written exam:

Percentage of correct answers (%)	Ocjenski bodovi
95-100	80
90-94,99	75
85-89,99	70

80-84,99	65	
75-79,99	60	
70-74,99	55	

Calculation of final grade:

Grade points earned in the final exam are added to the grade points earned during the course. Grading in the ECTS system is done by absolute distribution, i.e. based on total achievement and is compared to the numerical system in the following manner: A - excellent (5): 90-100 grade points; B - very good (4): 80-89.99 grade points; C - good (3): 65-79.99 grade points; D - sufficient (2): 50-64.99 grade points.

Required reading (available in the library and through other media)				
Title	Number of	Availability		
	copies in the	through other		
	library	media		
Abbas A i sur. Osnove imunologije. Funkcije i poremećaji	5			
imunološkog sustava. 5. izdSplit : Medicinski fakultet, 2017.				
-				
Vježbe iz imunologije, nastavni materijali, Medicinski fakultet	2			
u Osijeku, 2008 i M. Taradi (ur): Priručnik za vježbe iz				
fiziologije, Medicinska naklada, Zagreb, 2003.				
Additional reading				
1. Lectures synopsis				
Course evaluation procedures				
Anonymous, quantitative, standardised student survey on the course and the teacher's work				

implemented by the Quality improvement office of the Faculty of Medicine Osijek.